$graph
$graph :
PowerIteration is a the a decorator for Power Iteration algorithm
In mathematics, the power iteration is an eigenvalue algorithm: given a matrix A, the algorithm will produce a number λ (the eigenvalue) and a nonzero vector v (the eigenvector), such that Av = λv. The algorithm is also known as the Von Mises iteration.[1]
http://en.wikipedia.org/wiki/Power_iteration
In general, there will be many different eigenvalues for which an eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be positive implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure.[12] The component of the related eigenvector then gives the centrality score of the vertex in the network. Power iteration is one of many eigenvalue algorithms that may be used to find this dominant eigenvector.
http://en.wikipedia.org/wiki/Eigenvector_centrality#Eigenvector_centrality
__construct(\Trismegiste\Mondrian\Graph\Graph $g)
Decorates the graph
\Trismegiste\Mondrian\Graph\Graph | $g |
addEdge(\Trismegiste\Mondrian\Graph\Vertex $source, \Trismegiste\Mondrian\Graph\Vertex $target)
Add a (un)directed edge if it does not already exist
\Trismegiste\Mondrian\Graph\Vertex | $source | |
\Trismegiste\Mondrian\Graph\Vertex | $target |
addVertex(\Trismegiste\Mondrian\Graph\Vertex $v)
Add a vertex to the graph without edge
\Trismegiste\Mondrian\Graph\Vertex | $v |
searchEdge(\Trismegiste\Mondrian\Graph\Vertex $source, \Trismegiste\Mondrian\Graph\Vertex $target) : \Trismegiste\Mondrian\Graph\Edge
Searches an existing (directed or not) edge between two vertices
\Trismegiste\Mondrian\Graph\Vertex | $source | |
\Trismegiste\Mondrian\Graph\Vertex | $target |
getSuccessor(\Trismegiste\Mondrian\Graph\Vertex $v) : null|array
Get successors of a vertex
\Trismegiste\Mondrian\Graph\Vertex | $v |
null if the vertex is not in this graph
or an array of vertices
getEdgeIterator(\Trismegiste\Mondrian\Graph\Vertex $v) : \Trismegiste\Mondrian\Graph\Iterator
Get an iterator on edges for one vertex
\Trismegiste\Mondrian\Graph\Vertex | $v |