\Trismegiste\Mondrian\AnalysisCentrality

Centrality analyses a graph and add centrality rank to vertices Design Pattern : Decorator of Graph

What is the point of this tool ?

Searching for the degree of a vertex (outer and inner) is not enough because you could have a vertex with many edges but with low impact on source code if this vertex is not in the center of the graph. That's why I use the eigenvector of the digraph like Google does in his pagerank (sort of)

Summary

Methods
Properties
Constants
__construct()
addEdge()
addVertex()
getEdgeSet()
getVertexSet()
searchEdge()
getSuccessor()
getEdgeIterator()
getPartition()
No public properties found
No constants found
addCentralityRank()
$graph
N/A
No private methods found
No private properties found
N/A

Properties

$graph

$graph : 

Type

Methods

getEdgeSet()

getEdgeSet() : array

Get the edges set

Returns

array

getVertexSet()

getVertexSet() : array

Get the vertices in the graph

Returns

array

getSuccessor()

getSuccessor(\Trismegiste\Mondrian\Graph\Vertex  $v) : null|array

Get successors of a vertex

Parameters

\Trismegiste\Mondrian\Graph\Vertex $v

Returns

null|array —

null if the vertex is not in this graph

                    or an array of vertices

getEdgeIterator()

getEdgeIterator(\Trismegiste\Mondrian\Graph\Vertex  $v) : \Trismegiste\Mondrian\Graph\Iterator

Get an iterator on edges for one vertex

Parameters

\Trismegiste\Mondrian\Graph\Vertex $v

Returns

\Trismegiste\Mondrian\Graph\Iterator

getPartition()

getPartition() 

Returns a list of subgraph

addCentralityRank()

addCentralityRank(\Trismegiste\Mondrian\Graph\Graph  $g, string  $metaName) 

General method to calculate centrality with the power iteration algo

Parameters

\Trismegiste\Mondrian\Graph\Graph $g
string $metaName

the key of the metadata name to set in vertices